Liver Impairment in Septic Shock

Jens-Ulrik Jensen, MD, PhD
CHIP/Rigshospitalet, The Capital Region
Septic Shock and Liver Dysfunction

• Mortality in septic shock is around 30-50%
• Complex interaction of immune system, coagulation, apoptosis
• Microcirculatory collapse is central
• Liver dysfunction at baseline or developing within first 7 days does influence prognosis (PROWESS trial, NEJM+CCM 2003)

• Prevalence of Liver dysfunction 1.3% (Angus et al CCM 2004) to 20% (Bakker et al. 2004)

• Definition – Liver dysfunction in severe sepsis/shock
 • Bilirubin: disputed, most use single cut off (21 μmol/L or 34 μmol/L, or 70 μmol/L.)
 • Indocyanine Green (organic anion, eliminated by liver) clearance rate (PDR_{ICG}) - but – not associated to histological damage and no change at acute liver damage !!!
“….nevertheless, the incidence of liver dysfunction [in severe sepsis] remains imprecise, probably because current diagnostic tools are lacking, notably those that can detect the early liver insult.”

“…neither static nor dynamic tests can be considered a GOLD standard.”

“…despite this important clinical issue, recent trials on severe sepsis neglected to report specific data about liver function.”

Conclusion (Jensen 2015): We have a problem of diagnostic, prognostic and therapeutic dimensions - very few answers
Septic shock pathogenesis – immune dysregulation

Endotoxin/Exotoxin
- NF-κB activation
- TNFα, IL-1β, INFγ, IL-6, IL-8, IL-12, IL-18

iNOS-activation
- NO-release

F-VII → F-VIIa
- Tissue Factor

F-X → F-Xa
- Coagulation cascade
- Pro-Thrombin → Thrombin

Microcirculation breakdown
- Vascular stiffness
- RBC stiffness
- Organ Dysfunction

Fibrin Thrombus
- Mitochondrial dysfunction
- Apoptosis

Chemotaxis, opsonization
- TNFα, IL-1β, INFγ, IL-6, IL-8, IL-12, IL-18
Liver dysfunction in Septic shock – core pathophysiological steps

- Major role in endotoxin and bacterial clearance
 - In dysfunction: probably increased endotoxinaemia
- Synthesis of general blood proteins
 - In dysfunction: hypoalbuminaemia, oedemas, reduced scavenging function
- Synthesis of acute phase proteins (CRP, IL-6, PCT etc)
 - In dysfunction: Immune dysregulation – not just I-paresis
- Glucose metabolic homeostasis maintenance
 - In dysfunction: hyper-glycaemia – significance obscure /probably negative
- Coagulation regulation
 - In dysfunction: Protein C down regulation → hyper-coagulation → hypo-coagulation
- Cytochrome p450 – endo+xenobiotic elimination
 - In dysfunction: Reduced elimination of toxic compounds
Septic shock pathogenesis – immune dysregulation

"Organ crosstalk"?

Or: "Immune homeostasis" involving: Liver, bone-marrow, lymph nodes/spleen, blood cells, CNS, gut, endothelial cells etc

In septic shock: "Organ mis-understanding" when one or more of the components involved in "Immune homeostasis" is hit?
Acute Liver Damage (ALIDA) study – based on The Procalcitonin And Survival Study cohort
- Hyaluronic Acid measurements

- 1200 intensive care patients: RCT 2006-2010 - GCP
- >80% infected, predominantly bacterial and fungal
- 37% severe sepsis/septic shock
- 30-day survival 69%
- 67 years median age
- Plasma and serum frozen (-70°C) from every day – 9915 sample-days
- Hyaluronic acid (HA) measured for all days – 1125 patients with enough material
- HA produced in many tissues – primary elimination: liver
- HA established as a potent independent prognostic marker in chronic liver disease (Peters et al 2011, 2013, 2014)
Survival – liver failure defined as HA-quartiles – PASS

Hyaluronic Acid - day 1 in trial

Hyaluronic Acid - day 2 in trial

P<0.0001, log rank

Days after inclusion in PASS
Cox regression - multivariable

<table>
<thead>
<tr>
<th>Variable</th>
<th>df</th>
<th>p</th>
<th>Hazard Ratio</th>
<th>95.0% CI Lower</th>
<th>95.0% CI Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyaluronic Acid Q-1</td>
<td>3</td>
<td>.000</td>
<td>ref</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hyaluronic Acid Q-2</td>
<td>1</td>
<td>.053</td>
<td>1,451</td>
<td>.996</td>
<td>2,113</td>
</tr>
<tr>
<td>Hyaluronic Acid Q-3</td>
<td>1</td>
<td>.001</td>
<td>1,885</td>
<td>1,312</td>
<td>2,708</td>
</tr>
<tr>
<td>Hyaluronic Acid Q-4</td>
<td>1</td>
<td>.000</td>
<td>2,601</td>
<td>1,800</td>
<td>3,760</td>
</tr>
<tr>
<td>Age >65 year</td>
<td>1</td>
<td>.000</td>
<td>2,222</td>
<td>1,708</td>
<td>2,891</td>
</tr>
<tr>
<td>Apache II >25</td>
<td>1</td>
<td>.021</td>
<td>1,343</td>
<td>1,046</td>
<td>1,724</td>
</tr>
<tr>
<td>Septic Shock</td>
<td>1</td>
<td>.491</td>
<td>.916</td>
<td>.715</td>
<td>1,175</td>
</tr>
<tr>
<td>Chronic Alcohol abuse</td>
<td>1</td>
<td>.056</td>
<td>1,433</td>
<td>.991</td>
<td>2,072</td>
</tr>
<tr>
<td>Cancer (solid and haematological)</td>
<td>1</td>
<td>.821</td>
<td>1,046</td>
<td>.711</td>
<td>1,538</td>
</tr>
<tr>
<td>Chronic Obstructive Pulmonary Disease</td>
<td>1</td>
<td>.085</td>
<td>1,269</td>
<td>.968</td>
<td>1,664</td>
</tr>
<tr>
<td>Charlson’s score ≥2</td>
<td>1</td>
<td>.054</td>
<td>1,294</td>
<td>.995</td>
<td>1,681</td>
</tr>
<tr>
<td>Surgical patient (Y vs N)</td>
<td>1</td>
<td>.001</td>
<td>.631</td>
<td>.477</td>
<td>.836</td>
</tr>
<tr>
<td>Body Mass Index ≥25</td>
<td>1</td>
<td>.853</td>
<td>.972</td>
<td>.717</td>
<td>1,317</td>
</tr>
<tr>
<td>eGFR >60</td>
<td>2</td>
<td>.153</td>
<td>ref</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>eGFR 30-60</td>
<td>1</td>
<td>.141</td>
<td>.812</td>
<td>.615</td>
<td>1,071</td>
</tr>
<tr>
<td>eGFR <30</td>
<td>1</td>
<td>.066</td>
<td>.754</td>
<td>.558</td>
<td>1,019</td>
</tr>
<tr>
<td>Mechanical Ventilation at baseline</td>
<td>1</td>
<td>.000</td>
<td>1,650</td>
<td>1,259</td>
<td>2,162</td>
</tr>
<tr>
<td>Gender (male vs. female)</td>
<td>1</td>
<td>.257</td>
<td>1,142</td>
<td>.908</td>
<td>1,435</td>
</tr>
</tbody>
</table>
Thank you for listening!
And thanks to
Jens D. Lundgren – inspiration and scientific input

Questions: jens.ulrik.jensen@regionh.dk
CHIP/Infectious Medicine and Rheumatology - Rigshospitalet
and University of CPH